Python Best Practice: List Operation

Brief Introduction of List Comprehension, Map & Filter, Sort, zip and precaution when generating a list of single item

·

7 min read

1. Introduction

This blog introduces some best practices when handling list in Python.

2. List Comprehension

List comprehension means that you can contruct a new list from an existing list in a line.

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]
upper_fruits = [ fruit.upper() for fruit in fruits ]
print(f'{ upper_fruits= }')
# upper_fruits= ['APPLE', 'BANANA', 'CHERRY', 'KIWI', 'MANGO']

fruits_with_a = [ fruit for fruit in fruits if "a" in fruit ]
print(f'{ fruits_with_a= }')
# fruits_with_a= ['apple', 'banana', 'mango']

We can also use list comprehension to generate 2-dimentional array (or n-dimentinal array)

row_amount = 3
col_amount = 2

two_dimentional_arr = [ [ 1 for _ in range( col_amount ) ] for _ in range( row_amount ) ]
print(f'{ two_dimentional_arr }')
# [[1, 1], [1, 1], [1, 1]]

Remark:

  • col_amount is placed in the INNER loop and row_amount is placed in OUTER loop. (I learnt this when I was fixing a bug in the coding test practice)

  • When you need to apply Cartesian coordinate with the 2 dimentional array, the position will be switched:

    • x coordinate = COLUMN number in 2 dimentional array
    • y coordinate = ROW number in 2 dimentional array

      e.g. The point (2,0) in Cartesian coordinate image.png

      In 2 dimentional array, the same position is array[0][2] image.png

3. Map, Filter

map and filter can do the same thing but the concept is different:

  • map converts an existing list to a new list by applying a function to each element
  • filter is to generate a new list by filtering an existing list with a function
fruits = ["apple", "banana", "cherry", "kiwi", "mango"]

upper_fruits = list( map( lambda fruit: fruit.upper(), fruits ) )
print(f'{ upper_fruits= }')
# upper_fruits= ['APPLE', 'BANANA', 'CHERRY', 'KIWI', 'MANGO']

fruits_with_a = list( filter( lambda fruit: "a" in fruit, fruits ) )
print(f'{ fruits_with_a= }')
# fruits_with_a= ['apple', 'banana', 'mango']

4. List Comprehension vs. Map, Filter

Which way is better? 🤔

You may find a long debate about this topic on Internet. I personally prefer ninjagecko's answer and I tidied up and added my own opinion as follow:

  • Usually, use list comprehension instead of map, filter or reduce since list comprehesion is more intuitive and readable.

  • In some special case, like constructing multi-dimentional array, using list comprehension is easier

  • Use map, filter or reduce if there is a function already defined to carry out the action

    For example, we would like to convert "1 2 3 4 5" to a list of integer and function int is used

      input_text = "1 2 3 4 5"
      int_list = list( map( int, input_text.split() ) )
      print(f'{ int_list= }')
      # int_list= [1, 2, 3, 4, 5]
    
      int_list = [ int( x ) for x in input_text.split() ]
      print(f'{ int_list= }')
      # int_list= [1, 2, 3, 4, 5]
    

    map is better in this example as it does not need to declare an extra variable x as in list comprehension.

    However, it may lose readability to novoice programmer when they read your code

  • Use for-loop you need to do some complex operation insides the loop

  • list comprehension is only work in python and cannot apply to other languages, but the concept of map, filter or reduce exists in other programming languages as well, like JavaScript, C#

5. Sort

List can be sorted by calling .sort() or sorted(). The difference between two is that list.sort() is sorted the list itself without output, while sorted() returns a new sorted list.

prime_numbers = [11, 3, 7, 5, 2, 13]

prime_numbers.sort()
print(f'{ prime_numbers = }')
# prime_numbers = [2, 3, 5, 7, 11, 13]

prime_numbers_sorted = sorted( prime_numbers, reverse=True)
print(f'{ prime_numbers_sorted = }')
# prime_numbers_sorted = [13, 11, 7, 5, 3, 2]

5.1. Custom Sort with key

If we need to sort with a complex requirement, then we need to use key function. e.g. sorting employees by employee's name in ascending order.

employees = [
    {'Name': 'Alan Turing', 'age': 25, 'salary': 10000},
    {'Name': 'Sharon Lin', 'age': 30, 'salary': 8000},
    {'Name': 'John Hopkins', 'age': 18, 'salary': 10000},
    {'Name': 'Mikhail Tal', 'age': 40, 'salary': 15000},
]

employees.sort(key=lambda employee:employee['Name'])
employee_names = [ employee[ "Name" ] for employee in employees ]
print(f'{ employee_names = }')
#  employee_names = ['Alan Turing', 'John Hopkins', 'Mikhail Tal', 'Sharon Lin']

If you need to sort multiple key, e.g., salary in decending order, age in ascending order and name in ascending order, then you need to apply lambda e: ( -1 * e["salary"], e["age"], e["Name"] ) to the key function in sort.

employees = [
    {'Name': 'Alan Turing', 'age': 25, 'salary': 10000},
    {'Name': 'Sharon Lin', 'age': 30, 'salary': 8000},
    {'Name': 'John Hopkins', 'age': 25, 'salary': 10000},
    {'Name': 'Mikhail Tal', 'age': 40, 'salary': 15000},
    {'Name': 'Bruce Lee', 'age': 40, 'salary': 12000},
    {'Name': 'Harry Potter', 'age': 30, 'salary': 12000}
]

employees.sort( key=lambda e: ( -1 * e["salary"], e["age"], e["Name"] ) )
for employee in employees:
    print(f'{ employee }')
# {'Name': 'Mikhail Tal', 'age': 40, 'salary': 15000}
# {'Name': 'Harry Potter', 'age': 30, 'salary': 12000}
# {'Name': 'Bruce Lee', 'age': 40, 'salary': 12000}
# {'Name': 'Alan Turing', 'age': 25, 'salary': 10000}
# {'Name': 'John Hopkins', 'age': 25, 'salary': 10000}
# {'Name': 'Sharon Lin', 'age': 30, 'salary': 8000}

5.2. Custom Sort with comparator function

You can use cmp_to_key to convert a comparator function to a key function so it can be used by sort or sorted

import functools

employees = [
    {'Name': 'Alan Turing', 'age': 25, 'salary': 10000},
    {'Name': 'Sharon Lin', 'age': 30, 'salary': 8000},
    {'Name': 'John Hopkins', 'age': 18, 'salary': 10000},
    {'Name': 'Mikhail Tal', 'age': 40, 'salary': 15000},
]

def mycmp( e1, e2 ):
    e1_name, e2_name = e1['Name'], e2['Name']
    if e1_name > e2_name:
        return 1
    elif e1_name < e2_name:
        return -1
    else:
        return 0

print(f'{ sorted( employees, key=functools.cmp_to_key(mycmp) ) }')
# [{'Name': 'Alan Turing', 'age': 25, 'salary': 10000}, {'Name': 'John Hopkins', 'age': 18, 'salary': 10000}, {'Name': 'Mikhail Tal', 'age': 40, 'salary': 15000}, {'Name': 'Sharon Lin', 'age': 30, 'salary': 8000}]

6. zip, for 2 same size list in parallel

If you have 2 lists with same size and would like to use one for-loop, zip is the solution.

str_list = [ 'a', 'b', 'c', 'd' ]
num_list = [ 1, 2, 3, 4 ]

for string, num in zip(str_list, num_list):
    print(f'{ string, num }')
# ('a', 1)
# ('b', 2)
# ('c', 3)
# ('d', 4)

7. Precaution, generating a list of a single item

You can generate a list of a single item by list comprehension or *, e.g.

list1 = [ 1 for _ in range(4) ]
list2 = [ 1 ] * 4

print(f'{ list1= }')
print(f'{ list2= }', end='\n\n')
# list1= [1, 1, 1, 1]
# list2= [1, 1, 1, 1]

list1[ 0 ] = 0
list2[ 0 ] = 0

print(f'{ list1= }')
print(f'{ list2= }')
# list1= [0, 1, 1, 1]
# list2= [0, 1, 1, 1]

But if the single item is a list, the following problem will occurs.

list1 = [ [ 1 ] for _ in range(4) ]
list2 = [ [ 1 ] ] * 4

print(f'{ list1= }')
print(f'{ list2= }', end='\n\n')
# list1= [[1], [1], [1], [1]]
# list2= [[1], [1], [1], [1]]

list1[ 0 ].append( 2 )
list2[ 0 ].append( 2 )

print(f'{ list1= }')
print(f'{ list2= }')
# list1= [[1, 2], [1], [1], [1]]
# list2= [[1, 2], [1, 2], [1, 2], [1, 2]]

In list2, we only append 2 in the first element but all elements in list2 has been appended 2.

In the 1st example, since the single element is an integer, which is immutable. When we assign a new value to the first element of the list, we actually create a new instance and replace the original element in the list.

In the 2nd example, we need to understand the difference between list comprehension and using *:

  • [ [ 1 ] for _ in range(4) ] = generate a list of elements which each element is a DIFFERENT list [1]
  • [ [ 1 ] ] * 4 = generate a list of elements [1], which are reference to the SAME element
list1 = [ [ 1 ] for _ in range(4) ]
list2 = [ [ 1 ] ] * 4

for element in list1:
    print(f'list1,{ id( element )=}')
# list1, id( element )=1945471559360
# list1, id( element )=1945475077120
# list1, id( element )=1945475077056
# list1, id( element )=1945475076864

for element in list2:
    print(f'list2,{ id( element )=}')
# list2, id( element )=1945475076800
# list2, id( element )=1945475076800
# list2, id( element )=1945475076800
# list2, id( element )=1945475076800

Did you find this article valuable?

Support P Insight by becoming a sponsor. Any amount is appreciated!